Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Anal Chem ; 96(14): 5546-5553, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38551480

RESUMO

The detection of lysine acetyltransferases is crucial for diagnosing and treating lung cancer, highlighting the necessity for highly efficient detection methods. We developed a portable, highly accurate, and sensitive technique using fast-scan cyclic voltammetry (FSCV) to determine the activity of the lysine acetyltransferase TIP60, employing a novel miniature electrochemical sensor. This approach involves a compact electrochemical cell, merely 3 mm in diameter, that holds solutions up to 50 µL, equipped with a conductive indium tin oxide working electrode. Uniquely, this system operates on a two-electrode model compatible with the FSCV, obviating the traditional requirement for a reference electrode. The system detects TIP60 activity through the continuous generation of CoA molecules that engage in reactions with Cu(II), thereby significantly improving the accuracy of the acetylation analysis. Remarkably, the detection limit achieved for TIP60 is notably low at 3.3 pg/mL (S/N = 3). The results show that the reversible dynamic acetylation can be effectively regulated by inhibitor incubation and glucose stimulation. This cutting-edge strategy enhances the analysis of a broad spectrum of biomarkers by modifying the responsive unit, and its miniaturization and portability significantly amplify its applicability in biomedical research, promising it to be a versatile tool for early diagnostic and therapeutic interventions in lung cancer.


Assuntos
Neoplasias Pulmonares , Lisina Acetiltransferases , Humanos , Neoplasias Pulmonares/diagnóstico , Técnicas Eletroquímicas
3.
Angew Chem Int Ed Engl ; 63(19): e202402123, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38453654

RESUMO

Triplex DNA switches are attractive allosteric tools for engineering smart nanodevices, but their poor triplex-forming capacity at physiological conditions limited the practical applications. To address this challenge, we proposed a low-entropy barrier design to facilitate triplex formation by introducing a hairpin duplex linker into the triplex motif, and the resulting triplex switch was termed as CTNSds. Compared to the conventional clamp-like triplex switch, CTNSds increased the triplex-forming ratio from 30 % to 91 % at pH 7.4 and stabilized the triple-helix structure in FBS and cell lysate. CTNSds was also less sensitive to free-energy disturbances, such as lengthening linkers or mismatches in the triple-helix stem. The CTNSds design was utilized to reversibly isolate CTCs from whole blood, achieving high capture efficiencies (>86 %) at pH 7.4 and release efficiencies (>80 %) at pH 8.0. Our approach broadens the potential applications of DNA switches-based switchable nanodevices, showing great promise in biosensing and biomedicine.


Assuntos
DNA , Concentração de Íons de Hidrogênio , DNA/química , Humanos , Entropia , Conformação de Ácido Nucleico , Técnicas Biossensoriais
4.
Angew Chem Int Ed Engl ; : e202402881, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433093

RESUMO

Functionalized with the Au-S bond, gold nanoflares have emerged as promising candidates for theranostics. However, the presence of intracellular abundantly biothiols compromises the conventional Au-S bond, leading to the unintended release of cargoes and associated side-effects on non-target cells. Additionally, the hypoxic microenvironment in diseased regions limits treatment efficacy, especially in photodynamic therapy. To address these challenges, high-fidelity photodynamic nanoflares constructed on Pt-coated gold nanoparticles (Au@Pt PDNF) were communicated to avoid false-positive therapeutic signals and side-effects caused by biothiol perturbation. Compared with conventional photodynamic gold nanoflares (AuNP PDNF), the Au@Pt PDNF were selectively activated by cancer biomarkers and exhibited high-fidelity phototheranostics while reducing side-effects. Furthermore, the ultrathin Pt-shell catalysis was confirmed to generate oxygen which alleviated hypoxia-related photodynamic resistance and enhanced the antitumor effect. This design might open a new venue to advance theranostics performance and is adaptable to other theranostic nanomaterials by simply adding a Pt shell.

5.
Anal Chim Acta ; 1285: 342008, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38057047

RESUMO

The substrates of oxidase are biologically essential substances that are closely associated with human physiological health. However, current biosensing methods suffer from tough recyclability and undesired denaturation of enzyme due to impurity interference. Herein, we have developed a visual and reusable biosensor for detecting substrate using glucose oxidase (GOx) as a model oxidase. GOx was immobilized onto gold nanoparticles (AuNPs) at -20 °C in one step without additional reagents. The resulting nano-enzyme generated coloimetric signals by coupling with horseradish peroxidase (HRP) using TMB as the substrate. Our results demonstrated that the immobilized GOx exhibited satisfactory sensitivity (0.68 µM) for glucose detection and higher inherent stability than free GOx under harsh conditions, enabling reliable detection of glucose in complex fluids (colored beverages and saliva). Furthermore, the nano-enzyme retained 80 % activity even after four cycles of catalytic oxidation. This strategy constructs a universal biosensor for substrates with nano-enzyme which rely only on intrinsic cysteine within the oxidase while avoiding functional handle modification.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Oxirredutases , Enzimas Imobilizadas/química , Ouro , Indicadores e Reagentes , Glucose , Glucose Oxidase/química , Técnicas Biossensoriais/métodos
6.
Anal Chem ; 95(36): 13668-13673, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37644392

RESUMO

Mitophagy is the lysosome-dependent degradation of damaged and dysfunctional mitochondria, which is closely associated with H2O2-related redox imbalance and pathological processes. However, development of fast-responding and highly sensitive reversible fluorescent probes for monitoring of mitochondrial H2O2 dynamics is still lacking. Herein, we report a reversible fluorescent probe (M-HP) that enables real-time imaging of H2O2-related redox imbalance. In vitro studies demonstrated that M-HP had a rapid response and high sensitivity to the H2O2/GSH redox cycle, with a detection limit of 17 nM for H2O2. M-HP was applied to imaging of H2O2 fluctuation in living cells with excellent reversibility and mitochondrial targeting. M-HP reveals an increase in mitochondrial H2O2 under lipopolysaccharide stimulation and a decrease in H2O2 following the combined treatment with rapamycin. This suggests that the level of oxidative stress is significantly suppressed after the enhancement of mitophagy. The rationally designed M-HP offers a powerful tool for understanding redox imbalance during mitophagy.


Assuntos
Corantes Fluorescentes , Mitofagia , Peróxido de Hidrogênio , Terapia Combinada , Oxirredução
7.
Molecules ; 28(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37175146

RESUMO

Platinum nanoparticles (PtNPs) are classical peroxidase-like nanozyme; self-agglomeration of nanoparticles leads to the undesirable reduction in stability and catalytic activity. Herein, a hybrid peroxidase-like nanocatalyst consisting of PtNPs in situ growing on g-C3N4 nanosheets with enhanced peroxidase-mimic catalytic activity (PtNP@g-C3N4 nanosheets) was prepared for H2O2 and oxidase-based colorimetric assay. g-C3N4 nanosheets can be used as carriers to solve the problem of poor stability of PtNPs. We observed that the catalytic ability could be maintained for more than 90 days. PtNP@g-C3N4 nanosheets could quickly catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB), and the absorbance of blue color oxidized TMB (oxTMB) showed a robust linear relationship with the concentration of H2O2 (the detection limit (LOD): 3.33 µM). By utilizing H2O2 as a mediator, this strategy can be applied to oxidase-based biomolecules (glucose, organophosphorus, and so on, that generate or consume hydrogen peroxide) sensing. As a proof of concept, a sensitive assay of cholesterol that combined PtNP@g-C3N4 nanosheets with cholesterol oxidase (ChOx) cascade catalytic reaction was constructed with an LOD of 9.35 µM in a widespread range from 10 to 800 µM (R2 = 0.9981). In addition, we also verified its ability to detect cholesterol in fetal bovine serum. These results showed application prospect of PtNP@g-C3N4 nanosheets-based colorimetry in sensing and clinical medical detection.


Assuntos
Nanopartículas Metálicas , Oxirredutases , Peróxido de Hidrogênio , Platina , Peroxidase , Peroxidases , Colorimetria/métodos
8.
Anal Chem ; 95(21): 8318-8324, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37192373

RESUMO

ATP, a small molecule with high intracellular concentration (mM level), provides a fuel to power signal amplification, which is meaningful for biosensing. However, traditional ATP-powered amplification is based on ATP/aptamer recognition, which is susceptible to the complex biological microenvironment (e.g., nuclease). In this work, we communicate a signaling manner termed as ATP-specific polyvalent hydrogen binding (APHB), which is mimetic to ATP/aptamer binding but can avoid interference from biomolecules. The key in APHB is a functional fluorophore that can selectively bind with ATP via polyvalent hydrogen, and the fluorescence was lighted with the changes of the molecular structure from flexibility to rigidity. By designing, synthesizing, and screening a series of compounds, we successfully obtained an ATP-specific binding-lighted fluorophore (ABF). Experimental verification and a complex analogue demonstrated that two melamine brackets in the ABF dominate the polyvalent hydrogen binding between the ABF and ATP. Then, to achieve amplification biosensing, fibroblast activation protein (FAP) in activated hepatic stellate cells was taken as a model target, and a nanobeacon consisting of an ABF, a quencher, and an FAP-activated polymer shell was constructed. Benefiting from the ATP-powered amplification, the FAP was sensitively detected and imaged, and the potential relationship between differentiation of hepatocytes and FAP concentration was first revealed, highlighting the great potential of APHB-mediated signaling for intracellular sensing.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Trifosfato de Adenosina/química , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Diagnóstico por Imagem , Corantes Fluorescentes/química
9.
Anal Chem ; 95(18): 7142-7149, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37122064

RESUMO

Fluorescent probes have emerged as powerful tools for the detection of different analytes by virtue of structural tenability. However, the requirement of an excitation source largely hinders their applicability in point-of-care detection, as well as causing autofluorescence interference in complex samples. Herein, based on bioluminescence resonance energy transfer (BRET), we developed a reaction-based ratiometric bioluminescent platform, which allows the excitation-free detection of analytes. The platform has a modular design consisting of a NanoLuc-HaloTag fusion as an energy donor, to which a synthetic fluorescent probe is bioorthogonally labeled as recognition moiety and energy acceptor. Once activated by the target, the fluorescent probe can be excited by NanoLuc to generate a remarkable BRET signal, resulting in obvious color changes of luminescence, which can be easily recorded and quantitatively analyzed by a smartphone. As a proof of concept, a fluorescent probe for HOCl was synthesized to construct the bioluminescent system. Results demonstrated the system showed a constant blue/red emission ratio which is independent to the signal intensity, allowing the quantification of HOCl concentration with high sensitivity (limit of detection (LOD) = 13 nM) and accuracy. Given the universality, this reaction-based bioluminescent platform holds great potential for point-of-care and quantitative detection of reactive species.


Assuntos
Corantes Fluorescentes , Smartphone , Corantes Fluorescentes/química , Sistemas Automatizados de Assistência Junto ao Leito , Transferência de Energia , Testes Imunológicos
10.
Anal Chem ; 94(43): 15085-15092, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36266763

RESUMO

Epilepsy is a neurological brain disease, and its recurrent seizures are related to the reductive substance-powered antioxidant defense system (ADS). However, until now, there has been no report on the study of in situ antioxidant fluctuation during epilepsy of varying severity. In this work, hydrogen sulfide (H2S) was selected as the model target, a H2S-responsive near-infrared fluorophore was designed and synthesized, and an amphiphilic molecule was synthesized and modified with angiopep-2 peptide at its hydrophilic terminus. A nanobeacon termed as BFPP was prepared by the formation of micelles with the package of the fluorophore. The nanobeacon was sensitive to H2S, with a low detection limit of 17 nM. The H2S fluctuation in cells can be monitored by fluorescence imaging. In addition, angiopep-2 peptide at the surface of BFPP helps it cross the blood-brain barrier, and near-infrared fluorescence improves in vivo imaging. BFPP revealed that H2S was at a moderate level in the normal brain, but its level was obviously elevated during mild epilepsy because of the activation of the ADS while significantly suppressed during severe epilepsy due to neuronal damage. This approach is generally accessible for other targets by altering the responsive fluorophore, with significance for in situ analysis of brain pathology.


Assuntos
Epilepsia , Sulfeto de Hidrogênio , Humanos , Antioxidantes , Corantes Fluorescentes/química , Sulfeto de Hidrogênio/análise , Encéfalo/diagnóstico por imagem , Epilepsia/diagnóstico por imagem , Peptídeos , Convulsões
11.
Anal Chim Acta ; 1226: 340164, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36068049

RESUMO

Cytosine and protonated cytosine base pairs (C·CH+)-supported i-motif conformation has been widely employed in some interdisciplinary fields such as biology, medicine and chemistry. In this work, we report a new electrochemical biosensing method for the detection of glucose oxidase (GOx) and urease based on pH-induced DNA conformational-change. The constructed platform mainly includes TdT-mediated catalytic synthesis, GOx- or urease-catalyzed biological reaction and pH-induced DNA conformational-change. In the beginning, a kind of C-rich DNA is produced by TdT catalysis, and multiple C·CH+-supported i-motif structures appear under acidic condition. Then, the oxidation of glucose catalyzed by GOx or the hydrolyzation of urea aroused by urease can result in a generation of acidic or alkaline environment owing to the generated gluconic acid or ammonia. Herein, protonation and deprotonation interaction in TdT-yielded C-rich DNA can lead to different electrochemical impedance spectroscopy (EIS) toward Fe(CN)63-/4-. Based on it, the EIS response changes proportionally toward GOx concentrations from 0.01 to 20 U/L or urease concentrations from 0.01 to 50 U/L, and the detection limit of GOx or urease is 0.0061 U/L or 0.0028 U/L (S/N = 3), respectively. Beyond this, we also construct a series of molecular logic gates (YES, AND, NOT, and NAND) with good performance by altering inputs under long C-rich DNA substrate. These excellent properties indicate that the unique sensing platform is potential to monitor GOx or urease in practical biosystems and clinical medical examinations.


Assuntos
Técnicas Biossensoriais , Glucose Oxidase , Técnicas Biossensoriais/métodos , Citosina , Técnicas Eletroquímicas/métodos , Glucose/análise , Glucose Oxidase/química , Urease
13.
Angew Chem Int Ed Engl ; 61(16): e202114504, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35106878

RESUMO

Fertilization and early embryonic development as the beginning of a new life are key biological events. Hydrogen polysulfide (H2 Sn ) plays important roles during physiological regulation, such as antioxidation-protection. However, no report has studied in situ H2 Sn fluctuation during early embryonic development because of the low abundance of H2 Sn and inadequate sensitivity of probes. We herein construct a polymeric nanobeacon from a H2 Sn -responsive polymer and fluorophores, which is capable of detecting H2 Sn selectively and of signal amplification. Taking the zebrafish as a model, the polymeric nanobeacon revealed that the H2 Sn level was significantly elevated after fertilization due to the activation of cell multiplication, suppressed partially during embryonic development, and finally kept steady up to zebrafish emergence. This strategy is generally accessible for biomarkers by altering the responsive unit and significant for facilitating biological analysis during life development.


Assuntos
Hidrogênio , Peixe-Zebra , Animais , Desenvolvimento Embrionário , Fertilização , Polímeros , Sulfetos
14.
Anal Chim Acta ; 1198: 339555, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35190122

RESUMO

Heavy metal ions are considered to be the most serious sources for water pollution. Accurate detection of metal ions is important for pollution control and ecological protection. Background interference is an inevitable obstacle in the fluorescent analysis of complex samples. Herein, a persistent luminescent nanobeacon is communicated to detect metal ions in real samples via avoiding background interference. The nanobeacon is constituted by persistent luminescence nanomaterials and metal-specific DNAzymes. As a proof of concept, Zn2GeO4: Mn persistent luminescence nanorods (PLNRs) was synthesized and functionalized with the 17E DNAzyme for lead ion (Pb2+) detection. As a result, in the luminescent manner, the nanobeacon could recognize Pb2+ selectively and detect it with high signal-to-background ratios (SBR) both in buffer and real samples, but the fluorescent SBR declined significantly when used in real samples. Thus, this persistent luminescent nanobeacon can achieve practical detection of metal ions via avoiding background interference. Compared to previous methods of improving signal-to-background ratio, this persistent luminescent nanobeacon is more accessible, and all DNAzyme-specific ions can be directly adapted.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Técnicas Biossensoriais/métodos , Íons , Chumbo , Luminescência
15.
Chem Commun (Camb) ; 57(91): 12131-12134, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34723302

RESUMO

A clamp-like triplex switch (CTS) able to simultaneously downregulate an overexpressed onco-miRNA and replenish the lost tumor-suppressive miRNA in a controllable manner was developed for enhanced gene therapy. Compared to the "unidirectional" regulation approach, the CTS displayed improved anti-tumor efficacy in vitro and was harmless to healthy cells.


Assuntos
Terapia Genética , MicroRNAs/genética , Neoplasias/terapia , Humanos , Neoplasias/genética
16.
Anal Chem ; 93(38): 12944-12953, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34523923

RESUMO

For sensing low abundance of biomarkers, utilizing nanocarriers to load dyes is an efficient method to amplify the detected signal. However, the non-specific leak of the internal dyes in this approach is accompanied by false positive signals, resulting in inaccurate signal acquirement. To address this issue, in this work, we reported a novel signal amplification strategy with dye as a scaffold to construct a self-immolative dye-doped polymeric probe (SDPP). In our proposed approach, the dyes were covalently integrated into the main chain of a polymer, which can avoid the non-specific leak of the dye when used in a rigorous biological environment, thus evading the false positive signal. As a prototype of this concept, a SDPP, which responds to hydroxyl radicals (•OH), was rationally fabricated. Upon being activated by •OH, SDPP will liberate the dye through a self-immolative reaction to bind with protein for amplifying the fluorescence signal. Compared with a dye-loaded nanoprobe, SDPP can precisely track intracellular basal •OH levels and visualize the •OH associated with myocarditis in vivo. More importantly, the attempt in this work not only provides an effective molecular tool to investigate the role of •OH in cardiopathy, but also puts forward a new direction to current signal-amplifying strategies for precisely and reliably acquiring the intracellular molecular information.


Assuntos
Corantes , Radical Hidroxila , Diagnóstico por Imagem , Corantes Fluorescentes , Polímeros , Espectrometria de Fluorescência
17.
Angew Chem Int Ed Engl ; 60(42): 22970-22976, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34405498

RESUMO

Metal-coordination-directed biomolecule crosslinking in nature has been used for synthesizing various biopolymers, including DNA, peptides, proteins, and polysaccharides. However, the RNA biopolymer has been avoided so far, as due to the poor stability of the RNA molecules, the formation of a biopolymer may alter the biological function of the molecules. Herein, for the first time, we report Zn2+ -driven RNA self-assembly forming spherical nanoparticles while retaining the integrity and biological function of RNA. Various functional RNAs of different compositions, shapes, and lengths from 20 to nearly 1000 nucleotides were used, highlighting the versatility of this approach. The assembled nanospheres possess a superior RNA-loading efficiency, pharmacokinetics, and bioavailability. In-vitro and in-vivo evaluation demonstrated mRNA delivery for expressing GFP proteins, and microRNA delivery to triple-negative breast cancer. This coordination-directed self-assembly behavior amplifies the horizons of RNA coordination chemistry and the application scope of RNA-based therapeutics.


Assuntos
Complexos de Coordenação/química , RNA/química , Zinco/química , Carbocianinas/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Técnicas de Transferência de Genes , Humanos , MicroRNAs/química , MicroRNAs/metabolismo , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Nanomedicina , Nanopartículas/química , Nanopartículas/toxicidade , Tamanho da Partícula , RNA/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo
18.
Angew Chem Int Ed Engl ; 60(44): 23534-23539, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34378279

RESUMO

The peroxidase-like activity of nanozymes is promising for chemodynamic therapy by catalyzing H2 O2 into . OH. However, for most nanozymes, this activity is optimal just in acidic solutions, while the pH of most physiological systems is beyond 7.0 (even >8.0 in chronic wounds) with inadequate H2 O2 . We herein communicate an activatable nanozyme with targeting capability to simultaneously break the local pH and H2 O2 limitations under physiological conditions. As a proof of concept, aptamer-functionalized nanozymes, glucose oxidase, and hyaluronic acid constitute an activatable nanocapsule "APGH", which can be activated by bacteria-secreted hyaluronidase in infected wounds. Nanozymes bind onto bacteria through aptamer recognition, and glucose oxidation tunes the local pH down and supplements H2 O2 for the in-situ generation of . OH on bacteria surfaces. The activity switching and enhanced antibacterial effect of the nanocapsule were verified in vitro and in diabetic wounds. This strategy for directly regulating local microenvironment is generally accessible for nanozymes, and significant for facilitating biological applications of nanozymes.


Assuntos
Antibacterianos/metabolismo , Diabetes Mellitus/metabolismo , Glucose Oxidase/metabolismo , Glucose/metabolismo , Peróxido de Hidrogênio/metabolismo , Infecções Estafilocócicas/metabolismo , Animais , Antibacterianos/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/microbiologia , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Radical Hidroxila/química , Radical Hidroxila/metabolismo , Camundongos , Infecções Estafilocócicas/tratamento farmacológico
19.
J Hazard Mater ; 413: 125470, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33930977

RESUMO

Water pollution arising from heavy metal ions continues to be a major environmental problem, which represents a serious threat to human beings and animals worldwide. New materials that can simultaneously detect and remove these toxic ions are urgently required. Herein, nitrogen and sulfur co-doped molybdenum selenide nanosheets (N, S-MoSe2) were prepared and found to be fluorescently responsive to mercury (II) with an improved adsorption capacity (208.33 mg g-1), thereby providing the possibility for the simultaneous detection and removal of mercury (II) in water samples. The great affinity was the result of the complexation of mercury (II) with Se and S atoms in N, S-MoSe2 as well as the electrostatic adsorption of cation mercury (II) on negatively charged N, S-MoSe2. Besides good sensitivity and selectivity toward mercury (II), N, S-MoSe2 displayed a relatively consistent performance under a wide pH range from 3 to 10. The removal efficiency reached 87.5% with fast adsorption kinetics, and N, S-MoSe2 could be reused after simple treatment. Thus, this work is expected to provide new material for the detection and removal of mercury (II) in an aqueous solution and offer an insight into the interaction between heavy metal ions and inorganic nanomaterials.

20.
Mikrochim Acta ; 187(9): 497, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32803418

RESUMO

For the first time it is demonstrated that sulfhydryl compounds can suppress longitudinal etching of gold nanorods via consuming oxidizers, which provides a new signaling mechanism for colorimetric sensing. As a proof of concept, a colorimetric assay is developed for detecting organophosphorus pesticides, which are most widely used in modern agriculture to improve food production but with high toxicity to animals and the ecological environment. Triazophos was selected as a model organophosphorus pesticide. In the absence of triazophos, the active acetylcholinesterase can catalyze the conversion of acetylthiocholine iodide to thiocholine whose thiol group can suppress the I2-induced etching of gold nanorods. When triazophos is present, the activity of AchE is inhibited, and I2-induced etching of gold nanorods results in triazophos concentration-dependent color change from brown to blue, pink, and red. The aspect ratio of gold nanorods reduced with gradually blue-shifted longitudinal absorption. There was a linear detection range from 0 to 117 nM (R2 = 0.9908), the detection limit was 4.69 nM, and a good application potential was demonstrated by the assay of real water samples. This method will not only contribute to public monitoring of organophosphorus pesticides but also has verified a new signaling mechanism which will open up a new path to develop colorimetric detection methods. It has been first found that sulfhydryl compounds can suppress longitudinal etching of gold nanorods (AuNRs) via consuming oxidizers, which provides a new signaling mechanism for colorimetric sensing. As a proof of concept, a colorimetric assay is developed for sensitively detecting organophosphorus pesticides (OPs). It will not only contribute to public monitoring of OPs but also has verified a new signaling mechanism which will open up a new path to develop multicolor colorimetric methods.


Assuntos
Acetilcolinesterase/química , Colorimetria/métodos , Iodo/química , Nanotubos/química , Organotiofosfatos/análise , Praguicidas/análise , Triazóis/análise , Acetiltiocolina/análogos & derivados , Acetiltiocolina/química , Inibidores da Colinesterase/análise , Água Potável/análise , Ouro/química , Lagos/análise , Limite de Detecção , Estudo de Prova de Conceito , Compostos de Sulfidrila/química , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...